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Propagation of water waves past long 
two-dimensional obstacles 

By J. N. NEWMAN 
David Taylor Model Basin, Washington, D.C. 

(Received 17 December 1964 and in revised form 8 May 1965) 

An approximate analysis is developed for the propagation of water waves past 
long obstacles by considering separately the effects of diffraction at each end. 
The motion is two-dimensional, and linearized potential flow is assumed. Re- 
flexion and transmission coefficients are obtained for the long obstacle, and it is 
shown that for suitably chosen values of the obstacle length there is complete 
transmission due to interference between the two ends. A comparison is made 
with experiments for the case of a rectangular obstacle. 

1. Introduction 
Diffraction occurs when incoming progressive waves on the surface of a heavy 

fluid are incident upon a floating or submerged obstacle. If the obstacle is 
a long horizontal cylinder parallel to the incoming wave crests, the resulting 
fluid motion will normally be two-dimensional, i.e. confined to planes perpen- 
dicular to the cylinder’s generators. In  this case the incident wave will be 
partially transmitted past the obstacle, and partially reflected back. If the inci- 
dent wave is harmonic in time it is convenient to describe the resulting motion in 
terms of transmission and reflexion coefficients; these are defined as the complex 
amplitudes of the transmitted and reflected waves at infinity, divided by the 
incident wave amplitude. 

There have been numerous investigations of the problem described above, 
primarily for specific simple cylinders. Bibliographies may be found in the 
survey articles of Wehausen % Laitone (1960) and Wehausen (1963). A very 
general analysis of obstacle problems was presented by Kreisel (1949), including 
symmetry relations between the reflexion coefficients for waves incident from 
either direction. 

The present paper is concerned with the approximate analysis of two-dimen- 
sional wave reflexion and transmission in the special case where the obstacle 
is symmetrical and very long in the horizontal co-ordinate, compared to the wave- 
length, and where there is a long horizontal middle portion of the obstacle. IVith 
this geometrical configuration it is natural to consider the obstacle as made up 
of two shorter obstacles, each corresponding to one end of the long one, and joined 
by a long region of constant depth. One may then envisage the incident wave to 
be partially reflected a t  t4e first obstacle and partially transmitted to the second, 
where a smaller part is transmitted on and another part reflected back to the 
fist; this sequence of reflexion and transmission at  each end can be continued as a 
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geometric progression, converging to the solution for the long obstacle and in- 
cluding one reflected wave, one transmitted wave, and progressive waves propa- 
gating in each direction between the two ends. The necessary analysis is easier 
to perform than describe. Before doing so, however, we shall review and extend 
the derivation of Kreisel’s symmetry proof for a single obstacle, since it can be 
used to draw important conclusions concerning the reflexion and transmission 
properties of the long obstacle. In  particular we shall show that there exists an 
infinite set of wavelengths for a long symmetrical obstacle, such that the incident 
wave is totally transmitted. As a corollary it follows that the reflexion coefficient 
is a highly oscillatory function of the obstacle length, when this is large compared 
to the wavelength. 

A similar treatment of obstacles is that of Biesel & Le MBhaute (1955) but that 
work is limited to obstacles composed of a pair of short, individually symmetrical 
obstacles. This precludes the analysis, for example, of obstacles with a long 
elevated horizontal surface such as the submerged rectangular parallelepiped 
which is treated by Jolas (1960) and Takano (1960). 

2. The boundary-value problem and symmetry relations 
Let (x, y) be Cartesian co-ordinates, with y = 0 representing the plane of the 

undisturbed free surface and y being positive downwards. The fluid occupies the 
region -a < x < co, 0 < y < h(x), with the possible exception of one or more 

FIGURE 1. The geometrical configuration of the symmetrical obstacle. 

obstacles which are situated in the fluid within a finite distance of the origin 
(figure 1). The function h(x) is the fluid depth and we assume that h(x) > 0 
for -a < x < co and that h(x) tends to two distinct finite or infinite limits, say 
h*, as x --f k 00. With this geometrical configuration, diffraction of water waves 
will occur due to the variation of depth or to the obstacle(s) situated in the fluid, 
or to both. 

We consider the propagation of small plane progressive waves, sinusoidal in 
time with frequency (~/2n. If one assumes irrotational incompressible flow, the 
fluid-velocity vector may be represented by 

(2.1) 
where #(x, y) is the complex velocity potential. This potential must satisfy 
Laplace’s equation in the fluid domain, the kinematic boundary condition 

v = Re [e-iutV#(x, y)], 

aq5lan = 0 (2.2) 
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on the bottom and obstacles, and the linearized free-surface condition 

g2++ga$/ay = o 011 y =o, (3.3) 

with g the gravitational acceleration. 

finity the potential will be of the asymptotic form 
In the general case we allow incident waves from both directions, and at  in- 

$ -+ (A*e-iK*x+ B*eiK*x) coshK*(y-h*) as x -+ 2 co. (2.4) 

Here A* and B* are complex constants, with A+ and B-representing the incom- 
ing waves from right and left, respectively, and B+ and A- the outgoing waves. 
The wave-numbers K* are defined as the real positive roots of the equations 

K* tanhK*h* = c+/g. (3.5) 

4 = {A+, B+; A-, B-}. 

Following Hreisel (1949), we denote the potential symbolically by 

( 2 . 6 )  

Usually the physical problem is that of incident waves only from one direction, 
i.e. either B- = 0, for waves incident only from x = +co, or A+ = 0, for waves 
incident only from x = - 00. We denote the corresponding potentials by 

and 

(3.7) 

(2.8) 

Now, if $1 is a solution for the prescribed boundary conditions, then so is its 
complex conjugate & = {Bf ,  A,+, 0, AT}, 

and likewise any linear combination of q51 and& will be a solution. In particular, 

$2 = A;&I-B,+$l= (0, ~ A ~ ~ 2 - ~ B $ ~ 2 ;  -x+Ai,A$A,} (2.9) 

is a possible solution of the second problem, (2.8), in terms of the first, (2.7). 
The elevation of the free surface is given by the linearized formula 

Thus the reflexion coefficients for the two problems are 

R, = B$/Al+, 

R2 = A,/B<, 

(2.10) 

(2.11) 

(2.12) 

and the corresponding transmission coefficients are 

TI = ( A ,  coshK-h-)/(A? coshK+h+), (2.13) 

T2 = (Bzf coshK+h+)/(B, cash K-h-). (2.14) 

We note that these coefficients are complex, representing both the magnitude 
and phase of the diffraction process. 
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Using equation (2.9) to replace the coefficients A$ and B$, it follows from (2.12) 

Rz = -B,' .Ai/A;A,,  (2.15) and (2.14) that 

\A,+ 1' - I Blf cash K+h+ ~- T, = ~ l f ~ ?  cosh K-h- ' 

Comparing (2.11) and (2.15), we get the first symmetry result 

(2.16) 

(2.17) 

stating that for any obstacle the amplitude of the reflexion coefficient is inde- 
pendent of the direction of the incident wave. This fundamental symmetry rela- 
tion is due to Kreisel (1949). Forming the product of TI and T2 from (2.13) 
and (2.16), we obtain the additional relation 

(TITzI = 1- IRJ2. (2.18) 

Similar formulae can be inferred regarding the phases. Thus it follows from 

arg TI = arg T, = ST, 

arg R, + arg R, = 7~ + 2ST. 

(2.19) 
(2.13) and (2.16) that 

and from (2.11) and (2.15) that 

(2.20) 

3. Long symmetrical obstacles 
We are now ready to analyse the problem formulated in $1.  The obstacle 

is long compared to a wavelength and can be composed of two identical short 
obstacles, placed back-to-back and joined by a long region of constant depth. 
The short obstacles are situated a t  x = 0 and x = L. The fluid depth is h, at 
x = 5 co, and h, in the region between the two short obstacles. No restrictions are 
placed on the relative magnitudes of ho and h,. 

Incident waves of unit amplitude are assumed to propagate from x = +a, 
with no incoming waves from x = - 00. As a result there will be outgoing reflected 
waves, of amplitude R, at x = +a, and outgoing transmitted waves, of ampli- 
tude T, at  x = -a. 

Let K, and KO denote the wave-numbers appropriate to the depths h, and 
h,, as obtained from equation (2.6) . If K,L >> 1 the wave motion in the middle 
portion of the long obstacle will approximate to two plane waves, moving in 
opposite directions. Thus we can assume the following asymptotic behaviour 
for the wave height: 

7 (e-iFm X + R eiKm x id 1 - (x+ +a), 

7 ( A  e-i& 2 + B eiKo Z) e-id (1 < K,x < h',L), 

7 Te-iKm X - - i d  (x+ -a). 

The four coefficients R, T, A ,  and B are unknown, but they can be found from 
four simultaneous equations obtained by matching the waves a t  each short 
obstacle according to the reflexion and transmission coefficients for the short 
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obstacles. These are assumed known, and are denoted by lower-case letters as 
indicated in figure 1. Matching a t  x = L then gives the two equations 

A e-i6;o L = t 1 &Arm L + By, eiKo L 3 

00 L + Bt2eigo L ,  

(3.1) 

(3-2) R eiKm L = rl e-iK 

and matching a t  x = 0 gives 
B = r ,A,  

T = t ,A. 

Solving for the four unknowns, we obtain 
A = t 1 eQKo-Krn)L /[I -rie2iKoL], 

B =  r,t,ei(I'To-Km) L /[1 -rie2iKoL], 

T = t 1 2  t eWL-Km)L /[I --r;eZiKoL], 

(3.5) 

(3.6) 

(3-7) 

/[I -r;eZiKoL]. (3.8) 
Since,from (2.18)) Itlt21 = 1 - Ir212,themagnitudeof thetransmission coefficient 

(3.9) is 

where Sr, is the phase of the reflexion coefficient r2. It follows immediately that 
if the length L is suitably chosen to satisfy 

KO L + Sr, = nn, (3.10) 

for any integer n, then IT1 = 1 and the long obstacle is 'transparent'; i.e. the 
incident wave is totally transmitted without reflexion. Clearly in this case R = 0, 
as can be verified directly by using the phase relation (2.20). We see therefore 
that the reflexion coefficient R will depend critically on the parameter K,L, 
or the ratio of obstacle length to wavelength. Since KO depends in turn on the 
depth h,, a long obstacle will have a reflexion coefficient which depends critically 
on both its length and its depth. 

As long as Irl < 1, the wave motion is bounded and there is no resonance effect 
in the middle of the long obstacle. If we allow Irl -+ 1, implying that the short 
obstacles are almost perfectly reflecting,? then a singular behaviour follows 
when (3.10) is satisfied, since the denominator of the expressions in (3.5)-(3.9) 
tend to zero. However, it is imperative to note that, unless (3.10) is satisfied 
exactly, two limit processes are involved, and the final result depends on the 
order in which they are obtained. If Irl = 1 -el  and KoL+Sr,= nr+e2 with 
el and e, both small, then ]TI (1 +gle:)-$. 
Thus the transmission coefficient can take any value between zero and one, de- 
pending on the ratio e2/el. If this ratio is small, implying that 

IK,L+Sr,-nnl < 1 -  Irl < 1, 

then in the limit T = 1 and 11 = 0, while A and B are infinite. In this case there is 
zero reflexion and unbounded resonance on the obstacle, as was described by 
Biesel & Le MBhautB (1955). However if the ratio €,/el is large, implying that 

1 -  Irl < IKoL+6r,-n~I < 1, 

R = e-2iI< m L + r2tlt2e2i(Ko--h'm) L 

IT1 = [l- lr212]/[1 1 - lrZ12e2iKoL+2UrzI], 

t Obvious examples are a vertical barrier wit,h a narrow slit at or beneath the surface, 
or a barrier extending from the free surface down to a large dept,h. 
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then the order of the two limits is reversed and it follows instead that T = 0 
and JRI = 1. This is the situation one wouldnormally envisage of complete 
reflexion from the first barrier and no transmission beyond the second. Never- 
theless, the coefficients A and B, describing the wave amplitude on the obstacle, 
are still unspecified unless one prescribes the behaviour of t ,  as 1.1 -+ 1.  Thus it 
is clear that the limit Irl -+ 1 is quite complicated, and one must be very careful 
to specify the precise situation to be represented. 

Finally, we note that the analysis of the long obstacle can be generalized to 
non-symmetric profiles, by allowing the reflexion and transmission coefficients 
of the two ends to differ. Equations comparable to (3.5)-(3.9) are readily ob- 
tained. For example, the amplitude of the transmission coefficient is given by 

(3.11) 

where the primed coefficients correspond to the downstream end and the uii- 
primed to the upstream end. Complete transmission is possible if and only if 
I T /  = Ir’l. 

4. Conclusions 
We have derived the reflexion and transmission coefficients of a long hori- 

zontal obstacle in terms of the coefficients for each end. The results are asymp- 
totically correct assuming the obstacle to be long compared to a, wavelength. 
The reflexion and transmission coefficients depend critically on the parameter 
K,L, where KO is the wave-number for plane waves propagating above the 
mid-portion of the obstacle and L is its length. Thus there is a strong dependence 
on both the length and depth of the obstacle, which can be identified physically 
with interference between the waves reflected and transmitted at each end. 
These conclusions are independent of the detailed shape of the obstacle a t  each 
end. 

Within the accuracy of the asymptotic approximation there is an infinite 
sequence of values of K,L or, for any given obstacle geometry, of incident wave- 
lengths, such that the obstacle is ‘transparent’; i.e. the wave is totally trans- 
mitted with no reflexion taking place. Generally, however, there will be a phase 
shift. An analogous situation exists for submerged circular obstacles in infinitely 
deep water, where, as first shown by Dean (1948), there is complete transmission 
for all frequencies. 

As an example our analysis can be applied to the case of a long rectangular 
obstacle, for which comparison may be made with the experiments of Takano 
(1960). We assume the depth to be infinite, except at the obstacle, so that the 
reflexion coefficient for the infinite step (Newman 1965) can be applied at each 
end. The results are shown in figure 2 for an obstacle of length 8.86h0, correspond- 
ing to the experimental arrangement of Takano. In  an exact treatment one 
could expect that the sharp zeros in the reflexion coefficient would be rounded 
off a t  non-zero minima, especially for the low values of K,ho. Nevertheless, 
the trend of the experimental points is in agreement with the computed curves, 
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and it is clear that, due to interference phenomena, a complete description of this 
problem must include a much wider range of frequencies than was the case in 
Takano’s experiments or the parallel theoretical treatment by Jolas (1960). 
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FIGURE 3. Approximate reflexion and transmission coefficients for the rectangular 
parallelepiped of length 8*86h, in infinitely deep water. Experimental points of Takano 
(1960) are shown. 
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